Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames.

نویسندگان

  • Terrence R Meyer
  • Sukesh Roy
  • Vincent M Belovich
  • Edwin Corporan
  • James R Gord
چکیده

Simultaneous planar laser-induced incandescence, hydroxyl radical planar laser-induced fluorescence, and droplet Mie scattering are used to study the instantaneous flame structure and soot formation process in an atmospheric pressure, swirl-stabilized, liquid-fueled, model gas-turbine combustor. Optimal excitation and detection schemes to maximize single-shot signals and avoid interferences from soot-laden flame emission are discussed. The data indicate that rich pockets of premixed fuel and air along the interface between the spray flame and the recirculation zone serve as primary sites for soot inception. Intermittent large-scale structures and local equivalence ratio are also found to play an important role in soot formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional imaging of soot volume fraction and OH in turbulent jet diffusion flames spanning low to high mixing rates

Simultaneous planar measurements of laser-induced incandescence (LII) and Laser-Induced Fluorescence of OH radical were carried out in turbulent jet flames from a simple jet, precessing jet and bluff body burner firing natural gas. These flames span a wide range of global mixing rates and sooting characteristics, and are selected because measurements of total NOx emissions, radiant fraction and...

متن کامل

Qualitative measurements of pressure-atomized sprays through simultaneous collection of planar fluorescence, phosphorescence, and Mie scattering data

A laser diagnostic technique useful for qualitatively locating and describing regions of vapor and liquid structures of a pressure atomized fuel spray is examined. While Mie scattering is sensitive to the liquid phase within a spray, planar laser-induced fluorescence is sensitive to both the liquid and vapor phases. Hence, a comparison of images utilizing these two techniques could be used to q...

متن کامل

Experimental study of soot aerosol formation in swirl-stabilized flames of alternative aviation fuels on a path to sustainable aviation

Particulate matter (soot aerosol or carbon black) emissions from combustion systems have adverse effects on human health and the environment. Soot is a major contributor to the total radiation heat loss in propulsion systems. Soot aerosols in the atmosphere have significant positive radiative forcing that contributes to global warming because of strong absorption of sunlight by soot. As compare...

متن کامل

Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames.

Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. To quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operatin...

متن کامل

Reliable LIF/Mie droplet sizing in sprays using structured laser illumination planar imaging.

In this article, Structured Laser Illumination Planar Imaging (SLIPI) is used in combination with the LIF/Mie ratio technique for extracting a reliable two-dimensional mapping of the droplets Sauter Mean Diameter (SMD). We show that even for the case of a fairly dilute spray, where single scattering events are in majority, the conventional LIF/Mie technique still remains largely affected by err...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 44 3  شماره 

صفحات  -

تاریخ انتشار 2005